dFactory

Quickstart

  • Installation
  • Preparation
  • Quickstart: SFT upon dFactory
  • Configuration Design Guide

Train

  • Distributed Training
  • Profiler

Inference

  • SGLang dLLM Inference Guide

Algorithms

  • Discrete Diffusion Model
  • Block Diffusion
  • Trainable Parallel Decoding

FAQ

  • Frequently Asked Questions
dFactory
  • dFactory documentation
  • View page source

dFactory documentation

Quickstart

  • Installation
    • Prerequisites
    • Clone the Repository
    • Environment Setup and Dependencies
    • Next Steps
  • Preparation
    • Download and Merge Model Weights
    • Prepare Training Data
  • Quickstart: SFT upon dFactory
    • VeOmni Best Practices
    • Model and Optimizer
    • Train Loop
  • Configuration Design Guide
    • YAML Configuration Structure
    • Model Configuration
    • Data Configuration
    • Training Configuration
    • Configuration Patterns
    • Hardware Adaptation
    • Best Practices

Train

  • Distributed Training
    • Single-Node, Multi-GPU Training
    • Instructions
    • Multi-Node, Multi-GPU Training
    • Prerequisites
    • Environment Variables
    • Example for a 2-Node Setup
  • Profiler

Inference

  • SGLang dLLM Inference Guide
    • Overview
    • Installation
    • Server Launch
    • API Usage
    • Additional Resources

Algorithms

  • Discrete Diffusion Model
    • Random Masking Process (Forward Process)
    • Pre-training Objective
    • Supervised Fine-tuning (SFT)
    • Inference: The Reverse Denoising Process
    • Perplexity (PPL) Calculation
  • Block Diffusion
    • Core Design Rationale
    • Methodology
    • Helper Function to Create Block Diffusion Mask
  • Trainable Parallel Decoding
    • Overview
    • Path Distillation (Trajectory Compression)
    • DPARALLEL: Learnable Parallel Decoding

FAQ

  • Frequently Asked Questions
    • Veomni related
    • Install related
    • Evaluation related
Next

© Copyright 2025, DILAB.

Built with Sphinx using a theme provided by Read the Docs.