Quick start
AWorld is far more than just an agent foundation framework; it’s an industrial-grade agent production closed-loop.
- For users: It offers a suite of intuitive tools that enable defining agents and orchestrating multi-agent collaboration with just a single line of code.
- For developers: It provides a large number of atomic functions and expandable APIs to help build production applications.
- For researchers: It delivers an end-to-end pipeline, from data collection to training, making it a powerful tool for reproducing state-of-the-art (SOTA) results.
AWorld provides a complete solution for building, deploying, and evolving sophisticated multi-agent systems. If you aim to create intelligent systems capable of self-improvement and handling complex, long-horizon tasks, AWorld stands out as one of the best choices currently available in the open-source community.
Agent
Prerequisites
- Python 3.11 or higher
- pip package manager
- Git
Setup Steps
1. Clone the Repository
git clone https://github.com/inclusionAI/AWorld.git
cd AWorld
2. Install Dependencies
# Install in development mode
pip install -e .
# Or install
pip install aworld
3. Configure Environment Variables
Create a <font style="color:rgb(0, 0, 0);background-color:rgba(212, 222, 231, 0.247);">.env file in your project root:
# LLM Configuration
LLM_PROVIDER=openai
LLM_MODEL_NAME=gpt-4
LLM_API_KEY=your-api-key-here
LLM_BASE_URL=https://api.openai.com/v1
LLM_TEMPERATURE=0.7
# Other Variables
4. Verify Installation
from aworld.agents.llm_agent import Agent
from aworld.log.util import logger
logger.info("✅ AWorld installed successfully!")
Environment
Prerequisites
- Docker
- Docker Compose
Setup Steps
1. Verify
# Verify Docker versions
docker --version
docker compose --version
# Confirm the Docker daemon is running
docker ps
docker compose ps
2. Configuration
Copy the environment configuration file template and modify it according to your needs:
cp ./gaia-mcp-server/mcp_servers/.env_template ./gaia-mcp-server/mcp_servers/.env
The GAIA dataset is needed if you use the gaia-mcp-server.
3. Launch VirtualPC MCP Server
sh run-local.sh
4. Connect the MCP Server
Use the configuration to connect to your VirtualPC MCP Server instance:
{
"virtualpc-mcp-server": {
"type": "streamable-http",
"url": "http://localhost:8000/mcp",
"timeout": 6000,
"sse_read_timeout": 6000,
"client_session_timeout_seconds": 6000
}
}
Training
Prerequisites
- aworld
- AWorld env
- Special train framework
Setup Steps
Example with Verl
1. Docker Image
Use a mirror of the specified training framework, example:verl0.5-cu126-torch2.7.1-fa2.8.0,URL: https://github.com/volcengine/verl/tree/main/docker
2. Agent Define
Define Agent:
# define agent
agent = Agent(
name="train_agent",
desc="train_agent",
system_prompt="train agent system prompt",
mcp_config=mcp_config,
mcp_servers=[your_server],
conf=agent_config
)
3. Dataset
Specify the path to the local file, Huggingface Dataset, or load the dataset (requiring secondary processing).
# define dataset
train_dataset, test_dataset = "/Users/your_name/dataset/train", "/Users/your_name/dataset/test"
4. Training Config
Customize configuration items based on specific training frameworks.
Note: It is necessary to define a reward function for evaluating agent behavior based on specific task objectives, which can be set in the training configuration.
# define train config
custom_train_config = "string or json"
# define reward
reward_func = "None or string or code reference"
5. Run
Build a trainer instance and start training.
Note: If reward_func is code reference, it needs to be used as a parameter for AgentTrain.
from train.trainer.agent_trainer import AgentTrainer
trainer = AgentTrainer(agent=agent,
config=custom_train_config,
reward_func=reward_func,
train_dataset=train_dataset,
test_dataset=test_dataset)
trainer.train()